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Abstract

A new tight binding (TB) potential model was proposed for determining the electronic structures of ionic–covalent materials. In the
TB model, the matrix elements were determined from the atomic characteristics of the crystal. The atomic parameters of the solid were
determined based on the general quantum principles and no adjustable parameter was needed. Electronic structures of amorphous silicon
nitride (Si3N4) were calculated using this method. A good agreement between the calculated and experimental values in terms of funda-
mental properties such as the position of the valence-band edge, the conduction-band edge, and the energy bandgap were obtained.
Charge transfer between the silicon and nitrogen atoms was also precisely calculated in this work.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Non-empirical ab initio calculation has now become a
major tool for studying the electronic structures of solids.
As no empirical parameter is needed, the calculation results
are found to be more reliable. However, there are several
computational difficulties involved with the non-empirical
methods. The major difficulty is that the charge transfer
between atoms for forming the chemical bonds in the solid
must be taken into account for ionic and ionic–covalent
crystals or for crystals containing charged impurities. As
the charge transfers in crystals and the nature of amor-
phous materials normally involve rather large volumes, a
larger number of basis functions and hence a larger mem-
ory required in the ab initio calculations. In some calcula-
tions, e.g., ab initio calculations based on some clusters,
artificial localization of charges within the clusters were
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used and are often found to be inadequate for dealing
the effects of charge transfer. In some other cases, periodic
models were used but these models were also found to be
inappropriate for calculating the defect structures in solids.
Because of the requirement of electrical neutrality in the
cells, artificial compensation charges have to be introduced
and are more or less arbitrarily for the defect calculations.

There are some significant progresses on the quantum
mechanic calculations for the electronic structures of solids
[1–3]. Among these methods, the simple and efficient tight
binding (TB) method has received significant attention and
has many applications now. The TB method was used to
calculate some complex structures of solids [1,2]. Together
with formal KKR method (TB – LMTO) [2,3], the tight
binding method was also used in ab initio calculations.

In this work, we propose a simple and readily compre-
hensible method for calculating the electronic structures
of solid materials with ionic–covalent type of bonding with-
out using any empirical or adjustable parameter. Major
material properties, such as the transferred charge density,
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the position and singular points of allowed energy bands,
the width of bandgap, and the threshold energy for photo-
emission, will also be given. As an example, the method will
be used for predicting the electronic structures of amor-
phous silicon nitride (a-Si3N4). Silicon nitride has been the
key dielectric used in silicon devices [4–6]. It is also used
as the charge storage medium in flash memory cells [7].
To model the structure of a-Si3N4, we use the Bethe lattice
model with infinitely-extended branches to avoid the
requirement for assigning artificial charge localizations.
Due to the absence of bond rings, this model substantially
simplifies the calculations. It is also found to be quite effi-
cient in predicting the electronic structures of amorphous
materials [8,9].

2. Calculation procedures

The tight-binding Hamiltonian used in this calculation is
given by
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The diagonal and off-diagonal elements of the matrix
Hia,jb are the major parameters to be determined from
the atomic properties of the lattice atoms, changes of the
electron localization for forming insulating materials. The
changes affect the kinetic and potential energies between
the bonding atoms. These energies can be determined using
the general quantum-mechanical principles. A heuristic
process for determining the diagonal and off-diagonal ele-
ments is developed as follow.

2.1. Diagonal matrix elements

The diagonal element Hia,ia = Eia for the i-th lattice site
with the wavefunction of the a-th type can be written as

Hia;ia ¼ W ia þ U ia � T ia; ð2Þ
where Wia is the diagonal element of the Hamiltonian for
an isolated atom (one-electron atomic level); Tia is the
change in the intra-atomic kinetic energy and Uia is the
additional Coulomb repulsion energy due to the overlap-
ping of the electron shells of atoms in the material. Uia

and Tia can be expressed respectively as

Uia ¼ U 0
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Table 1
Starting values of parameters used for constructing the diagonal matrix eleme

Atom Parameters

�Wis �Wip U0 aþ5
i a

Si 14.17 7.05 7.64 – 0
N 24.63 12.66 13.15 0.15 –
where U 0
ia and T 0

ia ¼ �h2=2mða0
i Þ

2 are coulomb repulsion en-
ergy and the change of intra-atomic kinetic energy for iso-
lated atoms, respectively; a0

i is the initial radius of the ith
atom, and ai is the radius of this atom in the solid. The io-
nic radii of the elements forming the solid material are
determined from ab initio molecular calculations and from
the integer-valued atomic charges. We use quadratic inter-
polation of the atomic radius based on the charged state of
the atom, i.e.,

ai ¼ a0i þ a1i � dNi þ a2iðdNÞ2; ð4Þ

where dNi is the change in number of electrons on the atom
of the solid; and a1i and a2i were obtained by extrapolating
the ionic radii of atoms based on the fraction of charge
density. The initial atomic radii a0i were borrowed from
the reference data of HyperChem Released 5.02, and the
ionic radii a�q

i (q are integer numbers) from Ref. [10].
The values of the atomic parameters Wia (a = s, p) in (2)

were taken from the averaged values of the data calculated
from the Hartree–Fock and Xa methods which were
reported by Fisher and Hermann, and Skillman, respec-
tively [3] (see Table 1). The Coulomb parameters U0 (the
average intra-atomic Coulomb repulsion of electrons) were
adopted from the values reported by Climenti and Roetti
[9].
2.2. Off-diagonal matrix elements

The off-diagonal elements can be calculated using the
Harrison formula [3] by comparing the free-electron energy
bands in the empty lattice with the tight binding energy
bands, i.e.,

V ll0m � ðll0mÞ ¼ gll0m �
�h2

me

� �
� 1

d2

� �
; ð5Þ

where d is the separation between the nuclei, and gll0m are
the structural parameters defined by the type of the lattice.
The subscripts l, l 0 and m (=m 0) represent the angular parts
of the electron wavefunctions: l, l 0 = 0(s), 1(p), 2(d), etc;
and m = m 0 = 0(r), 1(p), 2 (d), etc.

Using this expression, we obtain a universal model for
the electronic structure of a tetrahedral crystal. In this
model, the atomic ‘filling’ of the lattice is defined by the
diagonal elements (analogs of atomic levels) only. How-
ever, instead of using (5), we use the following formula to
calculate the off-diagonal matrix elements,

V ia;jb ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T iaT jbnianjb

p
; ð6Þ
nts in the Hamiltonian of Si3N4

þ4
i a�3

i a�4
i a0i a1i a2i

.39 – 1.98 1.10 0.199 0.005
1.48 – 0.65 �0.255 0.022
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where Tia is the change in the intra-atomic kinetic energy,
and the occupation numbers are given by

Nia ¼ n
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D E
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p
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where Gia,ia (E + i0) is the diagonal matrix element of the
one-electron Green function which is the solution of the
following system:X

l;c

ððE þ i0Þdi;lda;c � H ia;lcÞGlc;jbðE þ i0Þ ¼ di;jda;b: ð8Þ

Note that the off-diagonal matrix elements become
dependent on the atomic levels of the initial atoms and
on the local coordination of these atoms in the lattice via
the occupation numbers. These elements need to be deter-
mined in a self-consistent manner. Formula (6) can easily
be transformed into (5) using the relationship given below:

gll0r ¼
d2

2aiaj
ðnilnjl0 Þ1=2

: ð9Þ

The coefficients gll0r playing the role as gll 0m in (5). In fact
(9) is just used to show the relation with previous reported
calculations, it does not need in the present calculations.
Table 2 lists the gll 0m coefficients calculated with other
methods. First row lists the structural factors for the tetra-
hedral Si lattice given by Harrison using the empty-lattice
band structure [3]. Second row depicts the data obtained
from semi-empirical calculations on zinc-blende (A3B5)
structure materials [9,11]. The subscripts a and c denote
the anion and cation, respectively. Data for Si, InAs, and
Si3N4, calculated in this work using (6) are listed in the
third, fourth, and fifth rows of Table 2, respectively. Data
in Table 2 indicate that the theoretical data calculated with
(6) agree well with those calculations based on adjustable
parameters over a wide range of tetrahedral materials.
The tight-binding Hamiltonian method, does not need
any adjustable parameter, is simple and accurate method
for predicting the electronic properties of materials.

2.3. Extended basis

Although the semi-empirical tight binding method is
able to describe the valence bands adequately, it fails to
give an adequate description of the conduction bands.
For nearest-neighbor approximation, it is impossible to
Table 2
Comparison of the factors in gll 0m calculated with (9) for various materials
and the universal A3B5 tetrahedral structure

gssr gsapcr
gscpar

gppr gppp Material

�1.39 1.88 1.88 3.24 �0.81 Si
�1.38 1.68 1.92 2.20 �0.55 A3B5
�1.42 1.92 1.92 2.58 �0.65 Si
�1.44 1.60 2.01 2.26 �0.63 InAs
�1.27 1.55 1.64 2.01 �0.50 Si3N4
predict the band structures of materials with indirect for-
bidden energy gap [11]. More complicated approximation
with larger numbers of empirical parameters may be made,
but only little improvement in the conduction band calcu-
lation was obtained [2]. Similar difficulties were also found
in the non-empirical methods. With this connection, an
extended basis consisting both valence orbital and par-
tially-occupied orbital was used. For example, when calcu-
lating the Si band structure, d orbits are also taken into
account [2,11–13] in addition to sp3s* basis which was also
used in the semi-empirical calculations [11]. In the semi-
empirical approach, the standard sp3 basis is extended to
comprise the excited atomic state s* with both the diagonal
(Es� ) and the off-diagonal (V s�p) matrix elements which are
treated as adjustable parameters. The Es� and V s�p param-
eters are used to fit the structure and the position of the
conduction-band edge only as the valence-band structure
is less sensitive to these parameters. By performing Leudin
transformation the effect of s* state becomes explicit and
the basis extension turns out to be an additive item to
the initial Hamiltonian. In matrix form, the additive item
can be considered as the atomic interaction with a reso-
nance energy Es�l extending beyond the nearest neighbors

H �ai;aj ¼ V ai;s�l � ðE � Es�lÞ�1 � V sl;aj; ð10Þ

where the subscript l refers to a certain atom site in the lat-
tice with the nearest neighbor lattice site i and the second
neighbors site j.

Using the smallest additive energy for valence-band, s*,
and considering the anti-bonding state A* be the additive
to the valence band of type a for the matrix element in
(10), we obtain

H �ai;aj ¼ V ai;A�l � ðE � EA�lÞ�1 � V A�l;aj; ð11Þ

where EA� is the resonance energy for the anti-bonding state
in the initial sp3 basis. Putting (11) into (10) will yield the
same results for the second-neighbor interaction as calcu-
lated using equations Eqs. (4)–(8). Fig. 1 illustrates the idea
of the above treatment.

2.4. Unshared pair

In ionic–covalent materials such as Si3N4, the unshared
pair pp orbit plays a special role in determining the width
Fig. 1. Sketch illustrating the role of matrix elements in formula (7).
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of the bandgap and the position of the valence-band max-
imum. In conventional tight binding calculations, the diag-
onal matrix element for the anti-bonding pp state was
considered as the same as the p state for forming covalent
bonds [14,15]. The validity of this treatment is problematic.
Electron in anti-bonding state experience a different poten-
tial from that of the sp2–sp3 nitrogen–silicon bond. By
assuming the diagonal matrix elements due to the pp
anti-bonding and p bonding states are equal, the energy
width DEpp of the band formed by unshared pair turns
out to be quite narrow when compared to the intra-atomic
Coulomb repulsion UpN among electrons. This issue can be
overcome by taking the interaction VppNp,ppN 0 among the
unshared pairs into account [16]. This treatment will result
in the pp band widening and forbidden band narrowing
and the results are closer to the experimental ones. Apart
from the adjustable parameters VppNp,ppN 0 the self-energy
of the unshared pair was also adjusted to have a better cor-
relation between the calculated and experimental results
[17].

Using the procedure described in Section 2.3 with sili-
con–nitrogen bonding, we obtain a parametric relation
with the diagonal element Epp for V A�Si;ppN and V ppN;A�Si;

H �ppN;p0pN0 ¼ V ppN;A�Si � ðEpp � EA�SiÞ�1 � V A�Si;p0pN0 : ð12Þ

The diagonal element Epp itself can be found from Eqs.
(2) and (3). The radius of the pp state is considered to be
equal to the distance between nitrogen atoms. We assume
that like in the N(SiH3)3 molecule, the spreading of the
unshared pair formed by p electrons in the pp state results
in the planar configuration of the nitrogen bonds in silicon
nitride.
Fig. 2. Comparison of the PDOS calculated with Bethe lattice model with
the experimental X-ray emission and absorption spectra of a-Si3N4.
Experimental X-ray emission spectra are shown as solid lines. Additional
experimental valence band photoelectron spectrum (hm = 87.1 eV) from
Ref. [17] is depicted as dotted line in the lower plot. Other curves are the
calculated densities of states.
3. Results

Fig. 2 compares the calculated local density of states
with the experimental X-ray emission and absorption spec-
tra for a-Si3N4 reported earlier [18]. The spectra in the fig-
ure are normalized with their peak values. The valence-
band edge of experimental data lies at �6.5 eV and the
energy scale of calculated data was referred to the zero elec-
tron energy in the vacuum. To have a better fitting with the
shapes of the experimental spectra, the calculated spectra
were broadened by adding 0.5 eV to Si 3p, 0.9 eV to Si 3s
and N 2p states.

The X-ray emission and absorption spectra of amor-
phous silicon nitride are depicted in solid lines and the cal-
culated spectra are shown in either dashed or dotted lines
in Fig. 2. As shown in Fig. 2, the Si L2,3 emission spectrum
is due to the transitions from the valence-band electron
states with symmetry A1. In addition to the s states local-
ized on the Si atom itself (see the dashed curve), the valance
band also contributes by a symmetric combination of four
Pp and sp2 orbital from neighboring nitrogen atoms. The
results are depicted in the second plot of Fig. 2. The third
plot of Fig. 2 compares the experimental Si K spectrum
with the calculated density of p states localized on the Si
atom (T2 symmetry). The fourth plot depicted in Fig. 2
shows the experimental N K spectrum and the calculated
density of the p states of the nitrogen atom including the
unshared pair. Photoelectron spectrum due to the a-Si3N4

valence band [17] measured using synchrotron radiation
with energy of 87.1 eV is also shown. The first peak from
the right is believed due to the unshared pair of nitrogen
atom.

Fig. 3 shows the normalized total density of states and
partial densities of states. The first plot shows the total den-
sity of states (solid line) and the weighted sum of the partial
densities of states of Si atoms (dashed line) and N atoms
(dash-dot line). The second plot shows the partial s (dashed
line) and p states (solid line) due to the Si atom. The third
plot of Fig. 3 depicts the partial densities of the states due
to the nitrogen atom. The s states are plotted in dashed



Fig. 3. Normalized PDOS of a-Si3N4 calculated using Bethe lattice model.
Zero energy is referred to the electron energy in vacuum.

Fig. 4. Charge variations on Si (dash line) and N (dotted line) atoms due
to the number of occupation states (in number of electron charge). Solid
line represents the charge balance curve as obtained from the weighted
summation of charge on Si and N atoms. Inset shows the magnified view
of the forbidden band region.

Table 3
Comparison of various the values a-Si3N4 parameters calculated in this
work and with the experimental values from various sources

Parameters Calculated Experimental

Width of the main bandgap (eV) 4.5 4.5 [4]
Ionic gap in the valence band (eV) 4.8
Charge transfer along the Si–N bond (e) 0.34 0.35 [5]
Position of EV (eV) �6.56 �6.5 [4]
Position of EC (eV) �2.08 �2.0 [4]
Width of upper valence subband (eV) 11.8 18 [18]
Width of lower valence subband (eV) 3.3 10 [18]
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line. The p states for forming the sp2–sp3 bond are shown
in solid line and the states of unshared pair are plotted in
dotted line.

Fig. 4 illustrates the effect of the charges on the Si and N
atoms as a function of the upper limit (EF) of the integral in
(7). The flat portions of the curve correspond to the forbid-
den bands. The same figure shows the charge balance curve
calculated with allowance for stoichiometry qb ¼ �ðqSi=4þ
qN=3Þ. The flat portion of the curve with zero magnitude,
with a magnified view shown in the inset, refers to the main
bandgap, the edges being the upper edge of the valence
band and the lower edge of the conduction band. The
numerical results on the band structure of silicon nitride
are listed in Table 3.

4. Discussion

It is noted that for calculation of the spectra shown in
Fig. 2, weighted summation of the densities of states was
used because of the difference between the related matrix
elements for the dipole moment operator. Without such
weighting, it is hard to obtain a good agreement with the
experimental data. Unfortunately, the dipole matrix ele-
ments are energy parameter dependent [19] and the rela-
tionships are not readily available. In this work, a crude
approximation was made by using a single reduction factor
for all the components and a much larger (1.8 eV) broaden-
ing parameter was used for fitting the calculated data. Tak-
ing the measurement accuracies of the experimental data
into account, the present theoretical results are still in good
agreement with the experimental ones. The major sources
of calculation errors are the approximation made for the
Hamiltonian, the use of the Bethe lattice, and the accura-
cies of initial values of the atomic parameters W, U, and a.

In Fig. 3, the singular points of the Si3N4 band structure
are obvious. The charges qi on atoms (i = Si or N) were cal-
culated with the formula

qi ¼ Zi �
X

a

niaðEFÞ; ð13Þ

where Zi is the number of valence electrons, and expression
(7) was used to calculate the second term in (13).

A good agreement between the predicted and experi-
mental values for the band structure of silicon nitride
was obtained. Since all energies are calculated from the
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single-electron atomic levels and the origin of the energy
scale was placed at the energy of electron in vacuum, the
calculated results should be accurate enough even consider-
ing the surface and many-electron effects. The obtained
energy position of the valence-band edge also coincides
with the photoemission threshold and the macroscopic
photoelectric workfunction.
5. Conclusions

A new tight-binding Hamiltonian calculation was pro-
posed for determining the electronic structures of ionic–
covalent materials. The proposed method does not involve
any empirical adjustment procedure for determining the
band edges and bandgap. The atomic parameters of the
solid were determined based on the general quantum prin-
ciples. Electronic structures of Si3N4 were calculated using
this method. A good agreement between the calculated and
experimental values in terms of fundamental properties
such as the absolute position of the valence-band edge,
the conduction-band edge, and the energy bandgap were
obtained. Charges transfer between the silicon and nitro-
gen atoms is also precisely calculated in this work.
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