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Abstract—A two-dimensional model is used to examine the spatial distribution of electrons in deep traps in
a two-dimensional dielectric. When the trap concentration is much higher than the trapped electron concen-
tration, Coulomb repulsion leads to the formation of a two-dimensional quasi-periodic hexagonal lattice of

localized electrons (Wigner glass).
DOI: 10.1134/S106377611102021X

Coulomb repulsion between free electrons leads to
Wigner crystallization, which has been observed on
liquid helium surface [1]. In [2—4], it was hypothe-
sized that Wigner crystallization of trapped carriers
(electrons and/or holes) could occur in a dielectric
with high neutral trap concentration because of Cou-
lomb repulsion, as predicted by the original Wigner
model. In [2], holes localized in silicon nitride were
assumed to form a quasi-periodic square lattice.

To examine Wigner crystallization of trapped elec-
trons and/or holes, we consider amorphous silicon
nitride as a model dielectric. Silicon nitride has mem-
ory: it can hold electrons and holes in traps for as long
as about 10 years at 7= 450 K [5]. Practical interest in
electron and hole localization in amorphous silicon
nitride is motivated by the development of terabit flash
memory based on silicon nitride [6]. There are deep
electron and hole traps (about 1.5 eV deep) in this
compound. According to studies of charge transfer,
the neutral trap concentration in Si;N, is N, ~ 10—
102 ¢cm~3 [7—11], whereas the concentration of occu-
pied traps is much lower, n, ~ (2—6) x 10'® cm™3 [12,
13]. In [14], electrons were observed to spread in sili-
con nitride, driven by their own repulsive Coulomb
field.

In this study, a two-dimensional model is used to
perform numerical simulations of Wigner crystalliza-
tion in a dielectric with deep traps.

We consider a two-dimensional dielectric with
concentration N, of randomly distributed neutral traps
as a model of disordered amorphous structure of a real
dielectric. A fraction of the traps are randomly occu-
pied by electrons, with concentration n,. A trapped
electron can be released with probability P by thermal
ionization. The ith free electron moves in the plane
with the drift velocity V; = puF; determined by the mag-
nitude and direction of the electric field F; generated
by other (both free and bound) electrons (. is the elec-

tron mobility). An electron that passes by at a distance
from a neutral trap shorter than a certain / is captured
by the trap.

Since only a finite number of traps can be used in
numerical simulations, boundary conditions should
be set with particular care. In our study, the system was
a square with side L, and cyclic boundary conditions
were imposed to avoid electric field distortion at its
boundaries; i.e., simulations were performed for an
infinite number of identical squares.

Traps with concentration N, were randomly distrib-
uted within a square, and » electrons were injected.
The electric field strength at the ith electron position is
expressed as

e

F, = e(r;—r;)
Z [(x—x) +-y)'1"

+F,+F, (1)

where the first term represents the field generated by
the electrons within the central square, r; and r; (x; and
X;, y;and y;) are the respective position vectors (abscis-
sas, ordinates) of the ith and jth electrons (measured
from the square’s center), F,and F, are the fields gen-
erated by the adjoining squares in the ordinate and
abscissa directions, and 1 and k are the corresponding
unit vectors:
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Figure 1. Left column: radial distribution of occupied traps for (a) n/ N, = 0.5, (b) ng/ Ny = 0.01, and (c) ny/ Ng = 0.001. Dashed
curves are Gaussian approximations of the distribution. Right column: simulated distributions of vacant (O) and occupied (®)
traps. Symbols A and O represent first, second, and third coordination spheres for triangular and square lattices, respectively.
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The following calculations were performed:
(i) the field strength given by (1) was determined for
each electron;
(ii) the drift velocity V; = pF; was found for each 7;
(iii) the displacement Ah = V,Ar was calculated,

where Arwas such that |Ah| ~ /2 for the maximum F;

(iv) the electron positions were updated, and the
distance to the nearest trap was calculated. If it was
found that ((x; — x,)* + (y; — ¥,)?)"/? < [, then the ith
electron was regarded as trapped and the gth trap was
charged.

The calculations were repeated until all electrons
were trapped (i.e., n = n traps were charged), and then
the number n (7) of charged traps was determined as a
function of the distance » between a pair of traps.

Figure 1 presents the results calculated for P= 0.01
and p = 1. According to these results, when the trap
concentration N, is comparable to the concentration
n, of injected and trapped electrons (n,/N, = 0.5, see
Fig. 1a), the function n,(r) has no special features and
corresponds to a random trap distribution. When
n/N,= 0.01, a certain structure is clearly seen, with
maxima of n(r) located between charged traps charac-
teristic of a three-coordinated lattice (see Fig. 1b). As
the ratio decreases to n,/ N, = 0.001, the peaks sharpen
and the structure becomes more visible (see Fig. 1¢).
Thus, in a plane containing randomly distributed neu-
tral traps, charged traps organize into a two-dimen-
sional glass with hexagonal lattice. As a criterion for
the existence of glass, we can adopt the following con-
dition: the half-width Ar, of the first coordination peak
is smaller than the distance r, — r, between the first and
second spheres:

F, =
3)

32
]

Ar, <ry—r,. 4)

Thus, we have shown that an ordered hexagonal
lattice of charged traps can form in a plane containing
randomly distributed neutral traps when the ratio
ny/ N has a certain value. Analogous results were pre-
viously obtained for a two-dimensional free-electron
gas [1].

A natural question arises about the applicability of
the model described above to real systems, in particu-
lar about the effect of quantization of electronic states
in neutral traps. It is well known that the bulk neutral-
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trap concentration does not exceed 102! cm~3; i.e., the
corresponding surface concentration does not exceed
10 cm~2. As demonstrated in this study, crystalliza-
tion occurs when n,/N, < 0.01. Therefore, the surface
concentration does not exceed 102 cm™2; i.e., the
average separation between electrons must not exceed
10-% cm. It is obvious that the effect of quantization is
weak over such separation distances.
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