ВИГНЕРОВСКАЯ КРИСТАЛЛИЗАЦИЯ ЭЛЕКТРОНОВ, ЛОКАЛИЗОВАННЫХ НА ГЛУБОКИХ ЛОВУШКАХ В ДВУМЕРНОМ ДИЭЛЕКТРИКЕ

С. С. Шаймеев^{*}, В. А. Гриценко

Институт физики полупроводников 630090, Новосибирск, Россия

Поступила в редакцию 8 июля 2010 г.

С использованием двумерной модели изучалось пространственное распределение электронов, локализованных на глубоких ловушках в двумерном диэлектрике. При концентрации ловушек, существенно превышающей концентрацию локализованных электронов, последние за счет кулоновского отталкивания образуют двумерную квазипериодическую гексагональную решетку (вигнеровское стекло).

Кулоновское отталкивание свободных электронов приводит к их пространственному упорядочиванию, вигнеровской кристаллизации. Вигнеровская кристаллизация свободных электронов наблюдалась на поверхности жидкого гелия [1]. В работах [2–4] была высказана гипотеза о возможности вигнеровской кристаллизации электронов и дырок, локализованных в диэлектрике с высокой концентрацией нейтральных ловушек. Вигнеровская кристаллизация локализованных носителей, как предполагается, осуществляется, как и в оригинальной модели Вигнера, за счет кулоновского отталкивания. В работе [2] предполагалось, что дырки, локализованные в нитриде кремния, образуют квадратную квазипериодическую решетку.

Модельным диэлектриком для исследования эффекта вигнеровской кристаллизации электронов и (или) дырок, локализованных на ловушках, является аморфный нитрид кремния. Нитрид кремния обладает эффектом памяти, способностью локализовать электроны и дырки на ловушках с гигантским временем удержания в локализованном состоянии, около 10 лет, при T = 450 K [5]. Практический интерес к исследованиям локализации электронов и дырок в аморфном нитриде кремния связан с разработкой терабитной флэш-памяти на нитриде кремния [6]. В этом соединении имеются глубокие (около 1.5 эВ) электронные и дырочные ловушки. Согласно данным по переносу заряда в Si₃N₄ концентрация нейтральных ловушек в нем составляет величину ($N_t \sim 10^{19} - 10^{20} \text{ см}^{-3}$) [7–11], в то время как концентрация заполненных ловушек существенно меньшую величину, $n_t \sim (2-6) \cdot 10^{18} \text{ см}^{-3}$ [12, 13]. В работе [14] наблюдалось растекание электронов в нитриде кремния в собственном электрическом поле за счет кулоновского отталкивания.

Целью настоящей работы является изучение (методами численного моделирования) эффекта вигнеровской кристаллизации электронов в диэлектрике с глубокими ловушками на основе двумерной модели.

Рассматривается модель двумерного диэлектрика с поверхностной концентрацией N_s нейтральных случайно разбросанных ловушек. Таким образом, аморфная неупорядоченная структура реального диэлектрика моделировалась путем случайного пространственного распределения ловушек. В таком диэлектрике часть ловушек случайно заполнялась электронами с поверхностной концентрацией n_s. Захваченный электрон имеет возможность покинуть ловушку с некоторой вероятностью Р за счет термической ионизации. Каждый свободный *i* электрон перемещается по плоскости с дрейфовой скоростью $V_i = \mu F_i$, обусловленной величиной и направлением электрического поля F_i, созданного другими электронами как свободными, так и связанными (µ — подвижность электрона). Если электрон проходит мимо нейтральной ловушки на расстоянии менее некоторого l_s , то он захватывается в ловушку.

Поскольку при численном моделировании можно использовать только конечное количество лову-

^{*}E-mail: shaimeev@isp.nsc.ru

шек, важным пунктом моделирования является выбор граничных условий. При решении поставленной задачи предполагалось, что исследуемая система имеет форму квадрата со стороной *L*, а для исключения искажений значений электрических полей вблизи границ квадрата — граничные условия зацикливались, т. е. с формальной точки зрения расчеты проводились на бесконечной плоскости с множеством идентичных квадратов.

На выбранный квадрат случайным образом размещались ловушки со слоевой концентрацией N_s . Далее на этот же квадрат размещались n электронов. Проводился расчет величины электрического поля в точках размещения электронов. Выражение для поля в месте расположения i электрона имеет вид

$$\mathbf{F}_{i} = \sum_{j \neq i}^{n_{e}} \frac{e(\mathbf{r}_{i} - \mathbf{r}_{j})}{\left[(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{3}\right]^{3/2}} + \mathbf{F}_{l} + \mathbf{F}_{k}, \quad (1)$$

где первый член определяет поле, создаваемое всеми электронами в центральном квадрате, \mathbf{r}_i , \mathbf{r}_j радиус-векторы, x_i , x_j , y_i , y_j — значения координат по осям ординаты и абсцисс для i и j электронов (отсчет координат ведется от центра квадрата), \mathbf{F}_l , \mathbf{F}_k — поля, создаваемые пограничными квадратами по осям ординат и абсцисс, \mathbf{l} , \mathbf{k} — соответствующие единичные векторы:

$$\mathbf{F}_{l} = \sum_{j=1}^{n_{e}} \frac{e(\mathbf{r}_{i} - \mathbf{r}_{j}) + (L - 2x_{j})\mathbf{l}}{\left[(x_{i} - L + x_{j})^{2} + (y_{i} - y_{j})^{3}\right]^{3/2}} + \sum_{j=1}^{n_{e}} \frac{e(\mathbf{r}_{i} - \mathbf{r}_{j}) + (L + 2x_{j})\mathbf{l}}{\left[(x_{i} + L + x_{j})^{2} + (y_{i} - y_{j})^{3}\right]^{3/2}}, \quad (2)$$

$$\mathbf{F}_{k} = \sum_{j=1}^{n_{e}} \frac{e(\mathbf{r}_{i} - \mathbf{r}_{j}) + (L - 2y_{j})\mathbf{k}}{\left[(x_{i} - x_{j})^{2} + (y_{i} - L + y_{j})^{3}\right]^{3/2}} + \sum_{j=1}^{n_{e}} \frac{e(\mathbf{r}_{i} - \mathbf{r}_{j}) + (L + 2y_{j})\mathbf{k}}{\left[(x_{i} - x_{j})^{2} + (y_{i} + L + y_{j})^{3}\right]^{3/2}}.$$
 (3)

Далее выполнялись следующие процедуры:

1) для каждого электрона рассчитывалось поле по формуле (1);

2) для каждого электрона рассчитывалась дрейфовая скорость, равная $V_i = \mu F_i$;

3) для каждого электрона рассчитывалось элементарное перемещение, равное $\Delta \mathbf{h} = \mathbf{V}_i \Delta t$. Величина Δt выбиралась такой, чтобы выполнялось условие $|\Delta \mathbf{h}| \approx l_s/2$ при максимальном F_i ;

4) пересчитывались новые значения координат для электронов и вычислялось расстояние

до ближайшей ловушки. Если оказывалось, что $((x_i - x_g)^2 + (y_i - y_g)^2)^{1/2} < l_s$, то *i*-й электрон считался захваченным, а *g*-я ловушка заряжена.

Все процедуры повторялись, пока все электроны не оказывались захваченными и, как следствие, $n_s = n$ ловушек оказались заряженными. После окончания процедуры зарядки ловушек проводился подсчет количества заряженных ловушек $n_s(r)$ от расстояния r между каждой парой ловушек.

Результаты расчетов приведены на рисунке (параметры Р и μ считались безразмерными и принимался равным соответственно 0.01 и $\mu = 1$). Из полученных данных следует, что когда концентрация ловушек N_s сравнима с концентрацией вброшенных электронов и захваченных на ловушках n_s , то зависимость $n_s(r)$ не имеет каких-либо особенностей и соответствует случайному распределению ловушек (см. рис. *a*, при $n_s/N_s = 0.5$). При соотношении $n_s/N_s = 0.01$ хорошо просматривается определенная структура, причем максимумы зависимости $n_s(r)$ расположены вблизи расстояний между заряженными ловушками, характерными для трехкратной координированной сетки (см. рис. б). При дальнейшем уменьшении отношения $n_s/N_s = 0.001$ пики сужаются, а структура прорисовывается более отчетливо (рис. в). Таким образом, в плоскости, случайно заполненной нейтральными ловушками, заряженные ловушки образуют двумерный кристалл (точнее говоря, стекло) с гексагональной решеткой. В качестве критерия существования стекла можно принять условие: полуширина пика Δr_1 первой координационной окружности меньше половины расстояния $r_2 - r_1$ между первой и второй сферами, т. е.

$$\Delta r_1 < r_2 - r_1. \tag{4}$$

Таким образом, показано, что при определенном соотношении n_s/N_s в плоскости, заполненной нейтральными ловушками, распределенными случайным образом, может формироваться упорядоченная гексагональная решетка из заряженных ловушек. Ранее аналогичные результаты были получены для двумерного газа свободных электронов [1].

Естественно встает вопрос о применимости изложенной выше модели к реальным системам, в частности, как скажется эффект квантования электронных состояний на нейтральных ловушках. Как известно [3], объемная концентрация нейтральных ловушек не превышает величину 10²¹ см⁻³. Следовательно, слоевая концентрация не превышает величину 10¹⁴ см⁻². Как показано в данной работе, эффект кристаллизации возникает при

Радиальное распределение заполненных ловушек (слева) при различных соотношениях n_s/N_s : $a - n_s/N_s = 0.5$, $b - n_s/N_s = 0.01$, $b - n_s/N_s = 0.001$. Штриховые линии — аппроксимация распределения с помощью функции Гаусса. Справа приведены расчетные картинки распределения свободных (°) и заполненных (•) ловушек. Значками △ и □ показаны положения 1, 2 и 3 координационных сфер для треугольной и квадратной решеток

отношении $n_s/N_s < 0.01$. Таким образом, слоевая концентрация заряженных ловушек не превышает величину 10^{12} см⁻², т. е. среднее расстояние между электронами не будет превышать величину 10^{-6} см. Очевидно, на таких расстояниях эффект квантования будет сказываться слабо.

Работа выполнена при финансовой поддержке СО РАН в рамках интеграционного проекта № 70.

ЛИТЕРАТУРА

- T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54, N2 (1982).
- **2**. В. А. Гриценко, Письма в ЖЭТФ **64**, 483 (1996).
- В. А. Гриценко, А. Д. Милов, Письма в ЖЭТФ 64, 489 (1996).
- A. I. Shames, V. A. Gritsenko, R. I. Samoilova et al., Sol. St. Commun. 118, 129 (2001).
- 5. V. A. Gritsenko, in: *Silicon Nitride in Electronics*, Elsevier, New York (1988).

- S.-C. Lia, H.-T. Lue, J.-Y. Hsuen et al., IEEE Electron Dev. Lett. 28, 643 (2007).
- 7. К. А. Насыров, Ю. Н. Новиков, В. А. Гриценко, С. Ю. Юн, Ч. В. Ким, Письма в ЖЭТФ 77, 455 (2003).
- K. A. Nasyrov, V. A. Gritsenko, Yu. N. Novikov et al., J. Appl. Phys. 96, 4293 (2004).
- К. А. Насыров, С. С. Шаймеев, В. А. Гриценко и др., ЖЭТФ 102, 810 (2006).
- K. A. Nasyrov, S. S. Shaimeev, V. A. Gritsenko, and J. H. Han, J. Appl. Phys. 105, 123709 (2009).
- A. V. Vishnyakov, Yu. N. Novikov, V. A. Gritsenko, and K. A. Nasyrov, Sol. St. Electr. 53, 251 (2009).
- 12. P. C. Arnett and B. Yun, J. Appl. Phys. Lett. 27, 256 (1975).
- 13. H. Maes and R. Van Overstraeten, J. Appl. Phys. 47, 667 (1976).
- 14. D. Fuks, A. Kiv, T. Maximova et al., J. Computer-Aided Mater. Design 9, 21 (2002).