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We calculated the spatial distribution of electrons localized at deep neutral traps in some amorphous
dielectric films based on some fundamental physics in order to explain the phenomena such as space
ordering of electrons. We showed that when the surface density of traps �Ns� is much larger than that
of the trapped electrons �ns�, e.g., ns /Ns�0.001, Wigner crystallization occurs due to the Coulomb
repulsion of trapped electrons and a two-dimensional quasiperiodic hexagonal lattice or Wigner
glass can be formed. © 2010 American Institute of Physics. �doi:10.1063/1.3458832�

It was long suggested that Coulomb repulsion of free
electrons can lead to some spatial orderings of electrons and
give rise to the Wigner crystallization.1 This phenomenon
should also occur in some dielectric films. It was suggested
that antiferromagnetic coupling of electrons localized at deep
neutral traps should exist in some dielectric films.2–4 Accord-
ing to this proposal, in a dielectric film with a high density of
deep and neutral traps, the local density of charged traps �nt�
would be much smaller than the local total density of traps
�Nt� due to the Coulomb repulsion of trapped electrons. In
addition, antiferromagnetic coupling of trapped electrons can
occur due to the resonant tunneling of trapped electrons via
the unoccupied traps. This model explained the experimental
observations that no any electron paramagnetic resonance
signal due to the trap-localized electrons or holes could be
detected in some dielectric films with high amount of traps,
such as amorphous silicon nitride �a-Si3N4�,2–5 silicon
oxynitride,6 and silicon oxide films with silicon
implantation.7

Amorphous silicon oxide and amorphous silicon nitride
are the two major dielectrics being widely used in silicon
microelectronic devices. Unfortunately, high amount of elec-
tron and hole traps were often found in these dielectric
films.8 The charge trapping in these materials is the major
cause for the instabilities and performance degradations of
the microelectronic devices.8–13 However, the charge trap-
ping in amorphous dielectric also has some practical appli-
cations such as it can be used as a charge storage in a flash
memory device.10,14,15 The phenomena of electron and hole
trapping in amorphous dielectrics had been the subject of
many investigations. It was reported that silicon nitride con-
tains a high amount of deep ��1.5 eV� electron and hole
traps. The volume density of these traps can be as high as
Nt�1019–1020 cm−3,16–18 but the density of filled traps �nt�,
in the range of �2–6��1018 cm−3, is much lower.19 By con-
ducting a computer simulation, Maximova et al.20 found that
the electron cloud in the silicon nitride spreads out because
of the Coulomb repulsion of electrons in their self-field. This
result is a preliminary theoretical evidence for supporting the
Wigner crystallization theory in amorphous nitride films.
This work extends the simulation to present a direct evidence

for the Wigner crystallization phenomenon in the amorphous
dielectric films.

We consider a two-dimensional dielectric in which the
initial sheet density of the randomly distributed neutral traps
is Ns. The disordered structure of a real amorphous dielectric
was modeled with a random distribution of deep traps. Then,
free electrons were randomly introduced into the film until
the sheet density reached a value of ns.

The physical model was based on the following assump-
tions:

�1� In the two-dimensional plane, neutral traps with
amount of Ns are randomly distributed. The energy
level of the trap, W, is placed in the forbidden gap of
the semiconductor and the averaged electron capture
cross-section for the traps is �.

�2� Free electrons, ns, are randomly placed in the two-
dimensional plane also. The free electrons are then
captured by traps according the criteria given later on.

�3� Each ith free electron migrates over the surface under
an electric field Fi induced by both the free electrons
and the trapped electrons. The drift velocity of a par-
ticular electron, Vi, depending on the field Fi, is cal-
culated according to Vi=�Fi �here, � is the electron
mobility�. For the sake of simplicity, dimensionless
unity mobility was used for the calculation. Noting
that we need to make such treatment because there are
no mobility data for electron in SiO2 and Si3N4 films
available. Nevertheless, the mobility value only affect
the time for electron to be settle down. It does not
affect the final distribution of the trapped electrons and
the ordering patterns.

�4� If an electron passes a trap within the region pre-
scribed by the capture cross-section, �, the electron is
considered to be captured on the trap.

�5� An electron captured on a trap may be released ac-
cording to thermal ionization probability, P.

Since only a limited number of traps could be taken in a
practical simulation, it is important for the proper selection
of the boundary conditions. We assumed that the system un-
der study was in a square shape with a side length of L. To
avoid the field distortions near the boundaries of the square,a�Electronic mail: eehwong@cityu.edu.hk.
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cyclic boundary conditions were used. This treatment in ef-
fect makes the calculations being carried out in an infinite
plane which is composed by a number of squares mentioned
above.

The square region under consideration was first ran-
domly planted with neutral traps to a surface density of Ns.
Next, electrons with density of ns were introduced into the
square. Then, the field vectors at the points where the elec-
trons located were calculated. The field vector at the location
of the ith electron is given by

F� i = �
j�i

ne e�r�i − r� j�
��xi − xj�2 + �yi − yj�3�3/2 + F� l + F� k, �1�

where the first term is the electric field due to all electrons in
the center of the square; r�i, r� j are the radial vectors for the
coordinates xi, xj and yi, yj along the ordinate and abscissa
axes, respectively, for ith and jth electrons �the coordinates
are reckoned from the center of the square�; and F� l and F� k

are the fields produced by squares adjacent to the square
under consideration over the ordinate and abscissa axes, with
l� and k� being unit vectors along F� l and F� k which are given by
following:

F� l = �
j=1

ne e�r�i − r� j� + �L − 2xj�l�

��xi − L + xj�2 + �yi − yj�3�3/2

+ �
j=1

ne e�r�i − r� j� + �L + 2xj�l�

��xi + L + xj�2 + �yi − yj�3�3/2 , �2�

F� k = �
j=1

ne e�r�i − r� j� + �L − 2yj�k�

��xi − xj�2 + �yi − L + yj�3�3/2

+ �
j=1

ne e�r�i − r� j� + �L + 2yj�k�

��xi − xj�2 + �yi + L + yj�3�3/2 . �3�

The calculation of the charge distribution involves the itera-
tion of the following process:

�1� for each of the electrons calculate the electric field
with Eq. �1�;

�2� for each of the electrons calculate its drift velocity
with Vi=�Fi;

�3� for each electron, calculate the incremental displace-
ment with �h� =V� i�t. The time step �t was such cho-
sen that ��h� �	� /2 still hold at the highest field Fi;

�4� then, new coordinate values for the electrons are com-
puted and hence the distances to the nearest traps are

FIG. 1. �a� Radial distribution of charged traps and �b� calculated spatial
distribution of neutral traps �open circles� and charged traps �filled circles�
for ns /Ns=0.5.

FIG. 2. �a� Calculated radial distribution of charged traps for ns /Ns=0.01
with Gaussian approximation �dashed curve�. Three peaks were found and
their locations are close to the first, second, and third coordination spheres
�marked as 1, 2, and 3, respectively� in a hexagonal �denoted by �� or a
square crystal lattice �� �. �b� Calculated spatial distribution of neutral traps
�open circles� and charged traps �filled circles� of the corresponding value of
ns /Ns.
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determined. If ��xi−xg�2+ �yi−yg�2�1/2��, then the ith
electron is considered to be trapped and the gth trap be
charged.

These procedures were executed repeatedly until all
electrons are captured at traps and, as a consequence, traps
became negatively charged with electrons. Following the
trap charging procedure, we calculated the total number of
charged trap, ns�r�, versus the separation r in each trap pair.

The calculated results are shown in Figs. 1–3 for various
cases. When the total density of traps, Ns, is comparable with
the density of electrons placed in the dielectric, ns, e.g.,
ns /Ns=0.5, the calculated electron distribution, ns�r�, in-
creases gradually with radial length �see Fig. 1�a��. The
trapped electrons show a random distribution nature �see Fig.
1�b��. When ns /Ns=0.01, the calculated spatial distribution
of the charged traps starts to exhibit some orderings, with
maxima showing up at a distance close to the value of lattice
constant of a sixfold coordinated crystal lattice �see Fig. 2�.
When the trap density increases further or ns /Ns decreases
further, as depicted in Fig. 3�a�, the radial distribution of
ns�r� exhibits even narrower peaks and the quasiperiodic
structure of traps becomes more distinct. The splitting of the
peak labeled 2 and 3 in the range of 15 and 20 nm is due to
the existence of two maxima corresponded to second and
third coordination spheres. The magnitude of the forth peak

in the range of 25–30 nm corresponds to forth coordination
sphere which has larger distance from the central atom and
thus has the larger number of localized electrons.

As shown in Fig. 3�b�, most of the charged traps distrib-
uted in a hexagonal pattern. That is, in a planar dielectric
with random neutral traps distribution, the charge trapping
can lead to the formation of a two-dimensional imperfect
crystal or, more exactly, a glass with hexagonal lattice. This
quasiordered lattice is due to the Coulomb repulsion effect of
tapped charges or Wigner crystallization. The criterion for
short-range ordering of the crystal can be defined as when
the half-width at half-maximum, �r1, of the first coordina-
tion peak is less than the separation between the first and
second coordination spheres, r2−r1, i.e.,

�r1 � r2 − r1. �4�

In summary, we have showed with theoretical calcula-
tion that the high amount of electronic trapping in a dielec-
tric can lead to the formation of a hexagonal quasiordered
lattice or Wigner glass as a result of Coulomb repulsion of
trapped charges. This effect takes place in dielectric with a
certain value of electron/trap ratio �ns /Ns�. An ordered hex-
agonal structure is formed when ns /Ns�0.001. Similar re-
sults were obtained for two-dimensional electron gas.1 This
present theoretical results also support the proposal for ex-
plaining the Coulomb blockade regularities in silicon nitride
that a crystal lattice is form due to the localized charge car-
riers but the structure of Wigner lattice should be a hexago-
nal rather than a square lattice according to the present simu-
lation.
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FIG. 3. �a� Radial distribution of charged traps for ns /Ns=0.001 with Gauss-
ian approximation �dashed curve�. Numbers denote the first, second, and
third coordination spheres positions in the hexagonal ��� or square �� �
crystal lattice, respectively. �b� Calculated spatial distributions of neutral
traps �open circles� and charged traps �filled circles� for ns /Ns=0.001. The
charged trap distribution shows some obvious ordering structures. A hexago-
nal lattice structure is shown in the plot.
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