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ABSTRACT

The operating principle of modern flash memory is based on the localization of electrons at dielectric traps and a subsequent change in two-
dimensional semiconductor channel resistance. Amorphous silicon nitride (Si3N4) serves as a charge storage medium in a flash memory. In
previous studies, Wigner crystallization driven by Coulomb interactions among free electrons was extensively investigated. For localized elec-
trons, Coulomb repulsion limits the maximum charge density reachable in the dielectric. This study focuses on investigating the structural
ordering, specifically Wigner crystallization, of localized electrons at deep traps (�1.5 eV) in Si3N4 at room temperature. Coulomb repulsion
of electrons localized at traps was experimentally observed. Experimentally, it is proven that the concentration of localized electrons is two
orders of magnitude lower than that of neutral traps, indicating Coulomb repulsion between localized electrons. In this work, we investigate
the structural ordering in a one-dimensional cluster of localized electrons using numerical simulations. The correlation functions of localized
electrons demonstrate their Wigner crystallization. The study of Wigner ordering of localized electrons reveals that the memory properties of
flash devices are governed by Coulomb interactions among these electrons rather than by the concentration of neutral traps.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0288664

Amorphous silicon nitride (Si3N4) has a high trap concentration
and is used as a charge storage medium in modern charge trap flash
memories (CTFMs).1,2

The higher the concentration of charged traps in Si3N4, the larger
the memory window (difference between logical “0” and “1” states).
The hypothesis of Wigner crystallization of electrons localized at traps
in the dielectric is proposed in Ref. 3. It was demonstrated that elec-
trons localized at traps in a dielectric form an ordered structure.4

Wigner crystallization of free electrons was theoretically predicted
in 1934 by Wigner.5 Wigner crystallization of free electrons above the
surface of liquid helium was predicted in Ref. 6 and experimentally
observed in Refs. 7 and 8. Wigner crystallization of charge carriers
in semiconductor inversion layers was theoretically studied.9

Experimentally, Wigner crystallization of electrons was observed in
GaAs/AlxGa1�xAs heterostructures.10 The one-dimensional (1D)
Wigner crystallization of free electrons was observed in carbon nano-
tubes.11 Two-dimensional (2D) Wigner crystals were studied in
2D free-electron gases under magnetic fields12,13 and have been
recently observed in metal dichalcogenide moir�e superlattices.14–18

Theoretically, two-dimensional Wigner crystals of free electrons were
investigated,19 including those for finite-sized systems.20–26

Note that neutral traps responsible for the memory effect in
Si3N4 are randomly distributed in space. Due to Coulomb repulsion,
electrons tend to be ordered, while random traps oppose ordering,
forming a partly ordered structure—Wigner glass. The competition
between the Coulomb interaction and disorder, arising from the ran-
dom distribution of impurities, was previously studied.27 Similar sys-
tems were investigated in the context of the Efros–Shklovskii Coulomb
gap model28,29 and vortex lattices in superconducting films.30–34 The
previously mentioned studies mostly consideredWigner crystallization
at helium temperatures.

In a flash memory, electrons localize on deep traps in Si3N4 with
the energy of 1.5 eV. When placing electrons on traps, they tend to
minimize the Coulomb interaction energy. Thus, the cluster structure
is determined by the minimality of Coulomb energy on the condition
that electrons are randomly distributed among traps. This creates a
competition between the disorder in the trap arrangement and the
ordering due to Coulomb interaction. The degree of disorder is
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determined by the ratio of neutral trap concentration to the electron-
occupied trap concentration. Moreover, the finite cluster size leads to
an influence of the total number of electrons on their ordering.21–25

In modern flash memory cells, the number of electrons is finite,
typically in the order of 102–103, and further miniaturization is
expected to reduce this number. In this paper, we experimentally
determine the neutral and the charged trap concentrations. We investi-
gate a 1D Wigner cluster (nanowire) of electrons localized at random
traps and examine the effect of disorder on its properties. The study
employs a numerical modeling. We will approach this problem
classically. Quantum states at trap sites can be reduced to this classical
problem if we neglect both the spatial state size and possible multi-
charge traps.

The samples were fabricated on the n-type silicon [orientation
(100)] with the resistance of 4.5 X � cm. Amorphous Si3N4 with the
66 nm thickness was deposited by the low pressure chemical vapor
deposition (LPCVD) method at 700 �C from dichlorosilane SiH2Cl2
and ammonia NH3 at the ratio of SiH2Cl2/NH3¼ 1:1. The contact was
made of 350nm thick phosphorus-doped polysilicon (poly-Si). The
contact area was 6.4� 10�3cm�2. The current–voltage characteristics
(IV characteristics) were measured in a Linkam LTS420E cell using a
Keythley 2400 device. The trap concentration localized in Si3N4 was
determined by measuring the hysteresis of the capacitance–voltage
(C–V) characteristics of metal–nitride–semiconductor, Si–Si3N4–Sips,
structures using the Agilent E4980A equipment.

The expression for the occupied trap concentration in the limit-
ing case of the uniform distribution of occupied traps over the entire
dielectric thickness has the following form:

nt ¼ 2CDVFB

edS
: (1)

Here, C is dielectric capacitance, DVFB is a shift in the flatband
potential during a charge accumulation, e is electron charge, d is dielec-
tric thickness, and S is contact area.

The charge transport in Si3N4 is limited by the multiphonon trap
ionization. At relatively low trap concentrations (Nt� 1018–1019 cm�3),
a trap ionization occurs via the Makram-Ebeid model into the conduc-
tion band.35 For high trap concentrations (Nt � 1020–1021 cm�3), the
ionization proceeds through the tunneling to neighboring traps accord-
ing to the Nasyrov–Gritsenko (N–G)model.36

The calculation of the current–voltage characteristic was per-
formed, neglecting the space charge, using the following expression for
the current density:37

J ¼ eN2=3
t P; (2)

where P is ionization probability, and Nt¼ a�3, where a is an average
distance between traps.

The total concentration Nt of neutral electron traps in Si3N4 was
determined from charge transport experiments using the N–G model.
The trap ionization probability in the N–G model of phonon-assisted
tunneling between neighboring traps is given by36

P ¼ 2
ffiffiffi
p

p
�hWtNt

2=3

m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT Wopt �Wtð Þ

p exp �Wopt �Wt

kT

� �

� exp � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�Wt

p

�hN1=3
t

 !
sinh

eF

2kTN1=3
t

 !
; (3)

where �h is reduced Planck constant, Wt is trap thermal ionization
energy, Wopt is optical ionization energy, m� is electron effective mass,
k is Boltzmann constant, T is temperature, and F is electric field.

The experimental and theoretical current–voltage characteristics
obtained using the N–Gmodel are presented in Fig. 1(a).

The N–G model quantitatively describes the current–voltage
characteristics of the n-Si/Si3N4 (66nm)/poly-Si structure with reason-
able thermal and optical trap ionization energy values (Wt¼ 1.5 eV,
Wopt¼ 3.0 eV), as shown in Fig. 1(a). The neutral trap concentration
Nt¼ 2.3� 1020 cm�3 was determined by fitting the experimental data
to the N–Gmodel.

The application of positive potential to the metal gate of the Si–
Si3N4–poly-Si structure induces a positive voltage shift in the C–V
characteristics indicative of the electron accumulation in the Si3N4

layer. The nt dependence on DVFB is calculated from characteristic C–
V shifts. [Fig. 1(b)]. The nt calculation was done on the assumption of
a uniform distribution of occupied traps.

The experimental data revealed the occupied electron trap concen-
tration nt¼ 1.4� 1018 cm�3 in Si3N4. This value is two orders of magni-
tude lower than the neutral trap concentration Nt¼ 2.3� 1020 cm�3

determined from the charge transport measurements in Si3N4. This dif-
ference arises due to the Coulomb repulsion between localized electrons.

To study the influence of traps, consider the electron capture in a
1D array of deep neutral traps, with concentration Nt, containing no

FIG. 1. (a) Current–voltage (I–V) characteristics of the n-Si/Si3N4(66 nm)/poly-Si
structure and the theoretical curves calculated using the model of phonon-assisted
tunneling between neighboring traps. (b) Concentration of charged traps vs flatband
voltage shift.
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free mobile charge carriers. Due to the small number of traps, electrons
tend to stay at the maximal distance from each other, allowed by the
trap positions, and form a disordered 1D structure—Wigner glass.

When an electron occupies a trap, it creates a repulsive potential
e2/eL for subsequent electrons, where L is the characteristic Coulomb
repulsion length. A second electron with energy Wph can approach an
occupied trap only within a distance 2L determined by the relation
e2=eL � Wph. A case when a second electron approaches an electron-
occupied trap is theoretically predicted in Ref. 38. In many
electron systems Coulomb repulsion leads to the localized electron
ordering on traps.

The occupied trap concentration nt � ð2LÞ�3 ¼ ðeWph=2e2Þ3
does not depend on Nt. Thus, increasing Nt during the dielectric syn-
thesis does not enhance the memory window.

Next, we consider the dielectric as a 1D system along the X axis
with randomly distributed neutral traps—empty sites where electrons
can be localized. Electrons are localized at random trap positions xi,
while the spatial state size is assumed to be negligible. The model
excludes both multiply charged traps and free electrons since they
quickly thermalize and get trapped.

Electron–electron interactions are determined by Coulomb repul-
sion, as well as an external parabolic potential generated by the elec-
trode field, to compensate for electron Coulomb repulsion and
keep them within the system. The parabolic potential UðxÞ ¼ cx2=2,
(c > 0), c is the stiffness of the parabolic potential and x is the distance
from the system center. The Coulomb interaction between electrons is
described by the following expression:

V ¼
X
i>j

e2=ejxi � xjj; (4)

where e is the low-frequency dielectric permittivity of the surrounding
medium, and xi and xj are trapped electron positions.

For numerical simulations of the system, we developed a com-
puter program that minimizes the total system energy.

The experiment yields a neutral-to-occupied trap concentration
ratio of the order of 100, which corresponds to 1001/3 � 5 in a 1D sys-
tem. Therefore, we model a 1D system with this ratio.

The electron density properties can be conveniently analyzed
using the electron spatial correlation function n(x). The function n(x)
averaged over 400 realizations of trap positions is shown in Fig. 2.

For both the free-electron system (Fig. 2, red dashed) and the
high-trap-concentration system (Fig. 2, green solid), n(x) exhibits a
series of pronounced nearly equidistant peaks indicating a periodic
electron ordering. The equidistant spacing breaks down at larger
distances due to boundary effects. Intermediate regions show less
distinct peaks resulting from a random trap distribution. This is par-
ticularly evident in the low-trap-concentration system (Fig. 2, blue
solid), where the electron positioning freedom becomes severely
constrained. In both the free-electron system and the system with a
high trap concentration, the n(x) functions show a good agreement
while being markedly different from the low-trap-concentration
case. This indicates the function’s sensitivity to the electron spatial
disorder.

The parabolic well is necessary to prevent electrons from escap-
ing. However, it forces an external inhomogeneity in addition to traps.
To deal with a more translational-invariant system, we consider
the electrons placed on a circle. Due to the confined geometry, no

confining potential is required in such a system. Note that although
the considered circle is a toy system, it can be realized experimentally.

Consider randomly distributed traps on a circle. The transition
from low to high electron density can be conveniently analyzed using
the electron angular correlation function g(u), where u is a polar
angle. To find a correlation function of electrons, we fix one electron at
the angle u ¼ 0 and find the positions of others.

The function g(u) averaged over 400 realizations of trap posi-
tions is shown for different trap (Fig. 3) and electron (Fig. 4) numbers.
The maxima reflect the most preferable electron positions caused by
the electron repulsion. When the ratio of trap and electron numbers
decreases, the fluctuation in the trap positions prevails and the correla-
tion function drops faster. The dashed lines represent envelope func-
tions, connecting maxima of gðuÞ.

The immanent property of the considered system is the concur-
rence between the Coulomb repulsion, forcing the electron ordering in
a lattice (for an equidistant 1D case), and random trap positions,

FIG. 2. Spatial correlation function n(x) of 11 electrons for the free-electron system
(red, dashed), the high-trap-concentration system (green, solid), and the low-trap-
concentration system (blue, solid). x is measured in units of cluster length.

FIG. 3. Angular correlation function g(u) of 40 electrons in 200 (blue), 400 (green),
and 4000 (red) random traps.
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forcing disordered electron positions. In the infinite system without
traps, all electrons conserve the order over the infinite distance. The
corresponding e–e correlation function does not decay at any dis-
tance. The traps induce the correlation function decay. The charac-
teristic decay length is determined by a distance when the nearest
appropriate trap occurs in half of the mean interelectron distance
l � 1=n1Dt , where n1Dt is a 1D electron (occupied trap) concentration.
That means the presence of a trap in an interval dx with the absence
of traps in a box, say, l=4 < x < 3l=4, the probability of which is
expð�N1D

t xÞN1D
t dx. We suppose, that n1Dt � N1D

t , where N1D
t is a

1D trap concentration. The correlation length is determined by a
distance where the appropriate trap and, subsequently, the next elec-
tron get into this box,

hlci ¼
ð3l=4
l=4

expð�N1D
t xÞN1D

t xdx � expð�N1D
t =4n1Dt Þ

4n1Dt
: (5)

The quantity hlci yields the correlation function decay rule
/ expð�x=hliÞ. This dependence agrees to the computer simulations.

The evolution of electron ordering with a change in electron
number for the fixed trap number can be analyzed by g(u) in Fig. 4.
For the highest electron number (Fig. 4, blue), g(u) is nearly constant,
indicating a weakly correlated disordered state. In this regime, limited
trap sites prevent the formation of long-range order, leading instead to
a glassy state.

As the electron number is reduced to 20 (Fig. 4, green), a peak
structure emerges in the correlation function signifying the onset of
spatial ordering. However, the peaks are broad, and the central peak
height is less pronounced, reflecting a system in a transitional phase
where correlation effects are strengthening, but the order is not yet
fully developed.

For the lowest electron number (Fig. 4, red), the Coulomb repul-
sion dominates and forces the electrons into a strongly correlated crys-
talline state. With ample traps available, the electrons localize
equidistantly along the circle to minimize Coulomb energy. This
results in a correlation function with distinct sharp peaks, which corre-
spond directly to the fixed relative angles between neighboring elec-
trons in this ordered Wigner-crystal-like arrangement. The system

undergoes a clear transition from a disordered glassy state at a high
density to a strongly correlated crystalline state at a low density.

In conclusion, this work experimentally demonstrates the
Coulomb repulsion between localized electrons in amorphous silicon
nitride (Si3N4), which manifested itself through the significantly lower
concentration of trapped electrons (nt), compared to neutral traps
(Nt). Numerical simulations of localized electrons in a 1D model reveal
the formation of Wigner clusters exhibiting their short-range order
across several nearest neighbors. Unlike Wigner crystals of free elec-
trons, the trap-localized electrons in the dielectric form a disordered
nonperiodic lattice, characteristic of the Wigner glass phase, where
their long-range periodicity is disrupted while maintaining the short-
range order.

While Wigner crystals of free electrons are formed only at low
temperatures (typically a few Kelvin), the deep traps (�1.5 eV) in
Si3N4 enable a Wigner glass formation by localized electrons even at
high room temperature conditions.

Coulomb repulsion between localized electrons in Si3N4—the
charge-trapping layer of CTFMs—leads to the incomplete trap filling.
This effect fundamentally limits the reachable concentration of
charged traps, thereby restricting the memory window in flash mem-
ory devices.
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FIG. 4. Angular correlation function g(u) of 10 (red), 20 (green), and 50 electrons
(blue) in the 100-random trap system.
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